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Machine learning unveils surface
refractive index dynamics in comb-like
plasmonic optical fiber biosensors

Check for updates

Hadrien Fasseaux 1 , Médéric Loyez 1,2,3 & Christophe Caucheteur1,3

The precise measurement of surface refractive index changes is crucial in biosensing, providing
insights into bioreceptors–analytes interactions. However, correlating intricate spectral features, with
these refractive index variations remains a persistent challenge, particularly in optical fiber gratings-
based Surface Plasmon Resonance sensing. Here, we introduce amachine learning-based approach
to address this ongoing issue. We integrate a regression model with gold-coated tilted fiber Bragg
grating sensors. This enhances signal stability and precision, enabling a correlation between spectral
shifts and refractive index changes.Our approacheliminates the need for individual sensor calibration,
thereby bolstering the effectiveness and efficiency of the sensing layer. We demonstrate the model’s
versatility by showcasing its efficacy across two data acquisition systems with different resolutions,
allowing for comparative analysis and robustness enhancement. Its application in a biosensing
experiment for insulin functionalization and detection, demonstrates how this breakthrough approach
marks an advancement in real-time refractive index monitoring.

Surface refractive index (RI) variation plays a crucial role in the realm of
biosensing, offering valuable insights into the complex interplay between
bioreceptors and their corresponding analytes1–4. Surface plasmon reso-
nance (SPR) has emerged as a highly-responsive technique for monitoring
biomolecular interactions, owing to theRI variations occurring in proximity
to a metal surface upon biomolecule adsorption5–9.

In recent years, a diverse range of physical platforms grounded in SPR
principles, such as the Kretschmann prism or optical fibers, have been
extensively explored, leading to the development of commercially viable
devices10–16. Optical fiber-based platforms offer a compelling array of attri-
butes, including immunity to electromagnetic interference, lightweight and
compact design, cost-efficiency, wavelength multiplexing capacity, and
adaptability17–20.

Among this array of configurations, gold-coated tilted fiber Bragg
gratings (Au-TFBG) emerge prominently, distinguished by their tem-
perature compensation ability21. Furthermore, their straightforward
fabrication not only preserves the inherent optical properties of the
single-mode fiber platform but also enables the extraction of cladding
modes involved in core mode coupling, achieved through a single
spectral measurement22–26. These cladding modes are illustrated in
Fig. 1a through the insertion loss spectrum (ILs) associated with

transverse electric (TE) polarization. When operating in the transverse
magnetic (TM)-polarization mode27, this dense spectral comb reveals a
distinctive notch centered around the resonance wavelength, signifying
the region of highest sensitivity (see Fig. 1b).

In response to these spectral changes prompted by a shift in RI, several
demodulation techniques have been conceived, linking shifts in wavelength
or amplitude to corresponding RI alterations23,28–32. Understanding the
evolution of the spectrum, characterized by distinct peaks in the spectral
comb, is paramount. Eachmode undergoes a sigmoidal evolution, with the
region of highest sensitivity confined to a specific range of refractive
indices28. Challenges arise when observing RI changes over extended
intervals and transitioning smoothly between modes during analysis.
However, certain methodologies, such as the cross-demodulation method
(refer to “Spectral shape characteristics”), mitigate the impact of suchmode
transitions.

Furthermore, recent investigations by Chubchev et al.33 have laid the
groundwork for integratingmachine learningmethodologies in the analysis
of spectral data derived from a plasmonic fiber sensor utilizing a TFBG.

Their work notably emphasizes the implementation of an algorithm
trained on one fiber and tested on another, particularly in the context of a
minor RI shift. It is crucial to underscore that their efforts have
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demonstrated the viability of a machine learning algorithm for the Au-
TFBG sensor (schemed in Fig. 1c), achieving a level of precision that would
have been challenging to attain through alternative means.

However, establishing a correlation between alterations in the spectral
pattern and RI fluctuations remains challenging due to the nature of the
spectral changes28. The quantification of sensor sensitivity through index
solutions becomes therefore imperative, despite potential implications for
the sensor’s efficacy in practical biodetection contexts. This underscores the
necessity of developing a proficient model endowed with the capability to
correlate measured spectral fluctuations with corresponding RI modula-
tions, leading to time savings, heightened reliability, and streamlined
medium characterization.

In this study, we present a pioneering approach to address the chal-
lenges posed by intricate spectral patterns, enabling real-time tracking of RI
variations in biosensing assays. Through the integration of a regression-
based machine learning model, we establish a robust correlation between
spectral fluctuations and changes in RI within an external medium. Fur-
thermore, we validate the efficiency of thismethod across two interrogation
devices, one of which is the most extensively employed instrument in this
researchfield.This innovative approachstreamlines biosensingprotocols by
obviating the need for a dedicated sensor sensitivity calibration step and
ensures the preservation of the effectiveness and efficiency of the sensing
layer. Importantly, it leads to a reduction in experimental duration,marking
a substantial advancement in the field. Additionally, for the first time, we
introduce real-timemonitoring of RI changes during biosensing trials. This
breakthrough overcomes the longstanding challenge that has hindered
sensor comparability.

Results
Spectral shape characteristics
As aforementioned, the incident polarization state plays a crucial role in
the spectral shape of the Au-TFBG34. Two distinct polarization states,
known as TM and TE (also known as p and s), give rise to different spectra
(see Fig. 1a, b). The TM-polarized state exhibits a comb-shaped spectrum
with attenuation associated with SPR, while the TE-polarization, ortho-
gonal to the TM-polarization, does not experience such attenuation. The
resonance wavelength of a surface plasmon is determined by the RI of the
surrounding dielectric material22 as

λsp ¼ Re ncoeff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵmϵd

ϵm þ ϵd

r� �
Λg

cos θ
; ð1Þ

where,Λg represents the grating period, θ is the tilt angle of the grating with
respect to the cross-section plane (see Fig. 1d). ϵm and ϵd are the dielectric
constants of themetal and dielectric medium, respectively, and ncoeff denotes
the effective RI of the core mode. Within a RI range of 0.01 refractive index
units (RIU) starting from the water RI, the resonance wavelength exhibits a
linear relationship with a variation of ~567 nmRIU−1. However, determin-
ing the resonance wavelength precisely is challenging due to the intricate
nature of the attenuation area within the ILs, as shown in Fig. 2a depicting
the SPR behavior under different surrounding refractive index (SRI) media.

The attenuation zone spans 3 nm with minimal amplitude variation
relative to other wavelength ranges, hindering the precise determination of
the SPR wavelength. To overcome this challenge, a cross demodulation
method can be employed, which involves tracking the intersection of two

Fig. 1 | The general concept associated with the utilization of gold-coated tilted
fiber Bragg grating (TFBG) biosensors is depicted. aThe insertion loss spectrum is
monitored with incident light in the transverse electric (TE) mode, and (b) in the
transverse magnetic (TM) mode. c The biosensor features a telecommunication-
grade fiber containing an inclined grating at its core. The cladding surface is coated
with gold, and receptors (depicted in purple) specific to the analytes (depicted in
orange) are affixed thereto. d The surface plasmon resonance mechanism is

facilitated by the presence of TFBGs located inside the core along the fiber axis
(z-axis), coupled with its excitation through the TM mode (electric field oscillates
along the y-axis). e The experimental setup includes a fiber sensor connected in
transmission with an optical vector analyzer. f A microfluidic system, comprising
micropumps, valves, a damper, and a bubble trap, is employed to maintain a steady
flow at 30 μg mL−1 into the microfluidic chamber, where the sensor is sealed.
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interpolations, as depicted by the black crossed curves in Fig. 2a. This
approach allows for the approximation of the SPR with an evolutionary
trend exhibiting a sensitivity comparable to that of the SPR
(~575.54 nmRIU−1 in this case). Nevertheless, a limitation of this approach
arises from the impact of mode transition on the linear response of the
observed intersection point which introduces complexity in accurately
determining the SPR wavelength, as depicted in Fig. 2b. To address this
limitation, integration of a band-pass filter within the generalized frequency
domain is proposed. The results depicted in Fig. 2c demonstrate that
implementing suchfiltering for ILs leads to adistinct localminimum, easy to
track, and exhibiting amore linear progressionwith increasing RI (red line).
Nevertheless, the observeddegreeof linearity is contingent upon the portion
of the generalized frequency that remains after filtering. By training a
machine learning model on spectra obtained from multiple fibers, we can
ascertain the optimal filtering approach and also establish the linear cor-
relation between the evolution of this minimum and SRI variations.

Machine learning model
Wehavedevised amachine learningmodelwith the aimof predicting theRI
change of the fluid surrounding an Au-TFBG. The model utilizes the
insertion loss spectra corresponding to multiple input polarization states,
leading to resonance with a surface plasmon. This approach enables the
establishment of a predictive relationship between the observed spectral
features and the SRI variations.

Data acquisition and preprocessing. The optical vector analyzer
(OVA), specifically the OVA CTe 4000NF from Luna Technologies Inc.
(set up as schematically illustrated in Fig. 1e and described in “Experi-
mental setupwith theOVA”), played a crucial role in our data acquisition
process. It provided essential elements of the Jonesmatrix (JðλÞ 2 C2× 2)
characterizing the system under test, enabling precise determination of
insertion loss spectra for various input polarization states. Indeed, let us
consider an elliptical state ∣ai defined with the Dirac notation as

∣ai ¼ cos α cos ϵ� i sin α sin ϵ

sin α cos ϵþ i cos α sin ϵ

� �
; ð2Þ

whereα∈ [0, π] is the orientation of themajor axis of the ellipsewith respect
to the x-axis, and ϵ∈ [− π/4, π/4] denotes the ellipticity. As such a state ∣ai
is transmitted through the system, it undergoes alterations, resulting in the
emergence of a new state ∣bðλÞ� ¼ JðλÞ∣ai at the output. The corre-
sponding ILs can be obtained by taking the logarithm of the relationship

IðλÞ ¼ hbðλÞjbðλÞi
hajai ¼ hajJyðλÞJðλÞjai

hajai ; ð3Þ

where JyðλÞ denotes the Hermitian conjugate of JðλÞ.
To determine the optimal input polarization state resulting in the TM-

mode spectrum, the initial step involves identifying the pair of input states
that produces its orthogonal TE-mode, a comparatively straightforward
task. Specifically, the focus lies on determining the polarization states that
minimize the average of the output ILs, yielding the two angles (α, ϵ)TE
corresponding to the TE-mode spectrum. Subsequently, the TM-mode is
obtained by applying the transformations α→ α ± π/2 and ϵ→− ϵ. So, the
measurement of a fiber sensor in a known RI solution for an input polar-
ization state, respectively represented by the indices f, n, and p = 1, con-
stitutes the dataset S ¼ fs1n;f g. However, even when a state close to the TM-
input state is employed, attenuation is still present.

Data augmentation becomes imperative to enhance the robustness of
our model. By recording ILs for input states in close proximity to the TM
input state,we ensure amore comprehensive dataset for training, even in the
presence of attenuation (see corresponding Ils in Fig. 3a for the 49 polar-
ization state inFig. 3b). For instance, considering thepair (α, ϵ)TM that yields
the ILs of the TM-mode, we also obtain the notch for input states (α ± δα, ϵ
±δϵ)TM,whereδα and δϵ are small (chosen fromthe set 0°, 3°, 6° inour case).
After this data augmentation, the data set serving as the basis for training the
model is S ¼ fspn;f g, where p denotes a polarization state leading to
ILs notch.

Model architecture. Ourmodel is grounded in spectral transformations.
Each spectrum, derived from fibers immersed in various RI solutions and
subjected to diverse input polarizations, undergoes a Fourier transfor-
mation, followed by band-pass filtering and an inverse Fourier trans-
formation. Local minima are identified, and the wavelength difference

Fig. 2 | Experimental transmission spectra for
various surrounding refractive index (RI) media
of a gold-coated tilted fiber Bragg grating
(TFBG). a Spectral evolution of the insertion loss
(IL) with increasing RI. The attenuation region
within the IL spectrum covers a span of 3 nm. The
point of intersection of the cubic interpolations,
represented by black lines, offers an approximate
visualization of the SPR phenomenon emphasized
through its projection on the refractive index-
wavelength plane (b). The progression with RI is
also illustrated through filtered transmission
spectra (c). Notably, the linear trajectory of the
local minima within the SPR attenuation zone is
evidenced by the corresponding projections on the
refractive index-wavelength plane (d). This near-
linear evolution displays a sensitivity akin to the-
oretical predictions (~605.53 nm RIU−1 in this
specific case).
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between these minima and those of a reference spectrum is measured. RI
changes serve as labels for training. A linear function correlating these
measured wavelength changes and the associated RI variations is estab-
lished, providing a quantitative relationship. The evaluation metric
employed is the mean absolute error (MAE).

Model training. The acquired spectra are Fourier transformed to high-
light their generalized frequency decomposition, given by

F ½spn;f ðλÞ� ¼ F spn;f ðνÞ ¼
Z

R
ei2πλνspn;f ðλÞdλ; ð4Þ

where ν are the generalized frequencies. Then, a filter function in the gen-
eralized frequency space is implementedusing a super-Gaussian of degree 4,
defined as:

f ðν; μ; σÞ ¼ e�
ν�μ
2σð Þ4 : ð5Þ

The transformed spectrumF spn;f ðνÞ ismultiplied by thefilter function,
and the inverse Fourier transform isfinally performedon the result, yieldinges pn;f . Through careful selection of the variables μ and σ, the resulting spec-
trum modulus exhibits a local minimum λmin around the predicted SPR
wavelength, as depicted in Fig. 2c. This local minimum exhibits a linear
trend with increasing RI, as highlighted in Fig. 2d.

The machine learning model (see Fig. 4a) optimizes two hyperpara-
meters, μ and σ, of a band-pass filter to extract a linear correlation between
SRI changes (δn) and the correspondingminimumwavelength change (δλ).
To obtain the linear model Nðδλ; ν̂; σ̂Þ that correlates the wavelength
evolution δλ to SRI shift δn with optimized hyperparameters μ̂ and σ̂, we
employ the least squares method in conjunction with a fivefold cross-
validation procedure.

The training dataset consists of pairs ðλmin; nÞpf , where λmin is the local
minimum, f andpdenote theutilized sensor and the inputpolarization state,
respectively. For each fiber f, we determine the pair ðλmin; nÞpf and calculate
the variations in both the RI and the associated minimal wavelength by
subtracting the value of the pair obtained while the fiber is immersed into
water (see Fig. 4b). Thus, we derive the pairs ðδλmin; δnÞpf . These datasets
are shuffled and divided into five equally sized segments, with one
segment serving as the test subset and the remaining four segments as the
training subset (see Fig. 4c). To ensure independence between training and
testing, we exclude ðδλmin; δnÞpf values from the training subset if the cor-
responding n and f indices also appear within the training subset. This

prevents training and testing on the same fiber exposed to the same RI
conditions. Then, we apply the least squares method to determine the
function Nðδλmin; ν; σÞ. Subsequently, this function is applied to the test
subset data, and the MAE is calculated. The test subset is then exchanged
with one of the four training subsets, and the process is repeated five times,
covering all constituent parts of the training set as the test subset. This results
in fivemeasuredMAEs, which are then averaged. The training procedure is
repeated with various μ and σ hyperparameter values to minimize the
averageMAE.A linear regression isfinally performedon the entire test set to
obtain the model Nðδλmin; μ̂; σ̂Þ. The flowchart in Fig. 4 summarizes the
machine learning approach that we have implemented.

Model validation. Themodel validation is conducted on an independent
and unused dataset originating from four distinct fibers, designated as
fibers 13 through 16, as illustrated in Fig. 5. Two of them were inter-
rogated with the OVA (fiber 13 and 14) and the two others were mon-
itored with an optical spectrum analyser (OSA) based setup (see
“Experimental setup with the OSA”) to show the applicability of the
method to equipment with lower spectral resolution (50 pm for the OSA
and 2.4 pm for the OVA). After subjecting the ILs of a single TM-
polarization to the aforementioned filtering process, we identify the local
minimum variation δλmin. These shifts serve as inputs for the model
Nðδλmin; μ̂; σ̂Þ, which predicts the corresponding RI denoted by n̂. The
results of the residual RI (i.e. the difference between the measured value
and the predicted one), alongwith a 95%confidence interval, are depicted
in Fig. 5.

In summary, our model relies on a spectral processing architecture,
extracting relevant features to predictRI changes in immersed optical fibers.
The parameters of the obtained band-pass filter are μ̂ ¼ 0:799 nm�1 and
σ̂ ¼ 0:097 nm�1. The relationship between RI change δn and wavelength
change δλ is measured at 0.00169474 RIU nm−1.

Biosensing application
Biosensing experiments were conducted with the OSA and a dedicated
microfluidic system (refer to “Experimental setup for biosensing” and
Fig. 1f). The latter is employed to uphold a consistent flow and prevent
sudden changes that could impact the baseline. As illustrated in Fig. 6a, c,
minor alterations in flow do not influence either the baseline or dispersion.
However, abrupt changes in flow, especially at higher levels as depicted in
Fig. 6b, d, do affect the signal’s baseline. This perceptibility of this alteration
is exclusively discernible through the proposed method, resulting in a less
dispersed signal (standard deviation around 0.006 nm) compared to the

Fig. 3 | Polarization dependency of the insertion loss spectrum. a Insertion loss
spectra of a distinctive optical fiber immersed in a refractive index solution with a
precisely measured value of (1.3337 ± 0.0002) RIU at 589 nm employing 49 diverse
input polarization states. The inset emphasized a detailed zoom on the surface

plasmon resonance notch. bDisplays a colormap representing each of the 49 utilized
input polarization states. The highlighted orange spectrum is obtained through the
methodology detailed in “Data acquisition and preprocessing”, whereas others
represent variations achieved by changing the orientation (δα) and ellipticity (δϵ).
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cross-demodulation method (standard deviation around 0.1 nm). Utilizing
the proposedmethod and the correlation function reveals a baseline shift of
1.3 × 10−5RIU during a transition from a flow of 30–100 μLmin−1. How-
ever, the dispersion remains constant at 10−5RIU. To mitigate this unde-
sired shift, a microfluidic system is employed to maintain a steady flow. In
this regime, any change approximately three times greater than the max-
imum dispersion can be deemed measurable, establishing a detection limit
of 3 × 10−5RIU. The target (or the analyte) is insulin diluted at a con-
centration ranging from 0.1 to 1 μgmL−1.

Biofunctionalization. Developing a biosensor from an Au-TFBG
necessitates the grafting of receptors on its sensing surface. The initial
steps involve binding self-assembledmonolayer (SAM) by immersion in a
solution containing 11-mercaptoundecanoic acid (95% purity, Sigma-
Aldrich) diluted in absolute ethanol for a duration of 18 h. Subsequently,
the surface undergoes cleaning with a pH 1.5 Glycine-HCl solution.
Activation of the carboxyl terminated SAM, generating reactive succini-
mide esters facilitated by a mixture of N-hydroxysuccinimide (NHS) and
1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC). Mouse anti-
human insulin antibodies are then introduced over the sensing surface,
forming a covalent linkage between amine group of the antibodies and the
matrix through the esters. To complete the functionalization process, any
remaining active esters are deactivated using ethanolamine-HCl.
Throughout the procedure, buffer rinsings, employing a mixture of

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), NaCl,
(ethylenediaminetetraacetic acid), and P20 surfactant, are performed
between each solution application. Figure 7 illustrates all the stages
excluding the 18-h SAM deposition procedure, comparing the cross-
demodulation technique (Fig. 7a) with the proposed method (Fig. 7b),
emphasizing the much enhanced fidelidy achieved with our approach.
Table 1 consolidates RI changes relative to the buffer’s RI (1.3351 at
589 nm) and the values predicted by the model. While the sensor
immersed in ethanolamine exhibits a spectrum that was neither utilized
for training nor validation, the predictions alignwith themeasured values,
thereby showing the potential of our model for RI changes beyond those
encountered during training. The red dashed horizontal line in Fig. 7b
denotes the threshold beyond which collected spectra were not employed
for training or validation purposes. The progression of ILs throughout the
detection process is illustrated in Fig. 8, with the intersection point
highlighted in red, utilizing the cross demodulation technique (repre-
sented by blue curves). The supplementary views focus on two peaks
(colored green and orange) situated towards the shorter wavelength side
of the SPRnotch, underscoring thedistinction in variation (amplitude and
wavelength) between the peaks.

Biodetection. In a sequential way, we introduced two insulin solutions
with distinct concentrations (0.1 μg mL−1 and 1 μg mL−1) into the system,
with careful buffer rinsing between each injection. The experimental

Fig. 4 | Flowchart outlining the proposed method. Rectangles represent input and
output data, while chevron arrows indicate the execution steps. The model focuses
on optimizing the hyperparameters (μ and σ) of the band-pass filter to achieve a
linear relationship, N, between minimum wavelength changes (δλ) and refractive
index (RI) changes (δn) in the filtered spectrum. a Expansion of the training set,
comprising 470 spectra from 12 different fibers (i.e.f∈ [1, 12]), by incorporating
input polarization states resulting in SPR attenuation within the insertion loss

spectrum (ILs). Training on this expanded spectrum enables the determination of
optimal hyperparameters (μ̂ and σ̂) and the development of a linear model that
correlates the evolution of the local minimum in the filtered ILs with the RI evo-
lution. bThe training process entails identifying hyperparameters that minimize the
averagemean average error (MAE) through linear regression. cThe cross-validation
process for model evaluation and performance assessment.
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results of this entire process are depicted in Fig. 7 using the cross-
demodulation method (Fig. 7c) and the proposed one (Fig. 7d). Clearly,
the curve demonstrates the demodulation’s capability to operate within
the sub-mRIU range of shift. The observable signal shift before and after
analyte injection highlights the sensor’s suitability for biodetections.
Notably, the binding dynamics assume a pivotal role, often comparable in
significance to changes in buffer levels. While this article’s primary focus
lies beyond a detailed exploration of these dynamics, the curves promi-
nently indicate themethod’s potential for future analytical investigations.

Discussion
The presented approach provides a practical solution for addressing the
challenges associatedwith extracting valuable information from the ILs of an
Au-TFBG-based biosensing platform during biosensing experiments. The
proposed regressive machine learning model was trained on an extensive
dataset comprising 23,030 spectra from 12 diverse Au-TFBG sensors,
encompassing 470 refractometric experiments and 49 different polarization
states. By relying on filtering the ILs within the generalized frequency
domain, the training process involves the determination of optimal filter

Fig. 6 | Signal stability of a gold-coated tilted fiber Bragg grating immersed in a
buffer solution across flow rates of 30, 40, and 100 μL min−1. Investigation
involves examining both fluctuations (a, c) and flow transitions (b, d) using both the
cross-demodulation method (a, b) and the proposed technique (c, d). The

correlation function reveals a standard deviation of 10−5RIU, with mean values of
10−6RIU and 13 × 10−6RIU for flow rates of 40 and 100 μLmin−1, respectively.

Fig. 5 | Validation curves illustrate the disparity
between experimentally determined refractive
index values and model predictions. Four separate
fibers were used for refractometry measurements
using and optical spectrum analyzer (OSA) and an
optical vector analyzer (OVA). Eachmeasurement is
shown within the refractometer tolerance zone
(±2 nm). Red dashed lines delimit the 95% con-
fidence interval of the model.
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parameters, leading to a simplified spectrum compared to the dense spectral
comb one. Additionally, it establishes the relationship correlating spectral
changes with RI variations. The training spectra were acquired using an
OVA, andwe demonstrate themethod’s applicability to an optical spectrum
analyzer, a widely utilized instrument in this research domain. Results from
four additional, previously unseenAu-TFBG sensors validate the robustness
of the correlation, highlighting the method’s effectiveness and versatility.
Predictions fall within a 95% confidence interval when forecasting RI var-
iations within a 0.01 RIU range. This not only streamlines biosensing pro-
tocols by obviating the need for specialized sensor sensitivity calibration but
also preserves the efficacy and efficiency of the sensing layer.

In the context of insulin sensor biofunctionalization and biodetection,
we conducted comparative analyses with the cross-demodulation techni-
que. The signal achieved through our regressive model enables a precise
differentiation between distinct stages, revealing attachment dynamics
previously obscured by cross-demodulation. Our filtering methodology
captures the entire evolution of the SPR notch, eliminating the need for
interpolation. This distinctive feature of our filtering process outperforms
the cross-demodulation technique, particularly in cases where spectrum
attenuation is not sufficiently pronounced or when spectral alterations are

localized at the attenuation edge. In such scenarios, observed for sub-mRIU
changes during the insulin detection process (refer to the corresponding
insertion losses in Fig. 8), there is an ambiguous shift of the crossed point
(red) within the envelope-based demodulation framework. Furthermore,
presentingRI evolution, rather thanwavelengthfluctuations, overcomes the
longstanding challenge of sensor comparability.

Methods
Sensor fabrication
The fabrication process of Au-TFBGs, which serves as the basis for the
biosensors used in this study involves several steps. A silica
telecommunication-grade optical fiber (Corning SMF-28) is first hydrogen-
loadedat~200 bar and60 °C for 30 h inorder to enhance its photosensitivity.
Then, using the phase mask technique, a tilted Bragg grating is inscribed
within the fiber core. An excimer laser (Noria, from Northlab Photonics)
operating at 193 nm is used in conjunctionwith an 8°-tilted phasemaskwith
a period of 1100 nm. To eliminate hydrogen in excess, the fiber is heated at
100 °C for 24 h. Finally, a 50 nm-thick gold layer is deposited on the fiber
using a sputter-coater Spuco equipped with 2 in. magnetron modules
operating at a 250WRF power supply. The deposition process is monitored
using an inbuilt quartz microbalance with a resolution of 0.1 nm.

Index solutions
The index solutions were based on LiCl and had varying concentrations
covering RI range from 1.3332 RIU (pure water) to 1.3430 RIU for themost
concentrated solution. The RI of the solutions was measured at 589 nm
using a portable refractometer (Reichert Analytical Instrument, Brix/RI-
check). The index solutions were intentionally formulated to exhibit a
minimum difference of 2e-4 RIU, ensuring discernible variations suitable
for effective model training.

Table 1 | Comparative table presenting the valuesofmeasured
and predicted refractive index (RI) shifts

Solutions Measured RI shift (mRIU) Predicted RI shift (mRIU)

Glycine-HCl −1.4 ± 0.4 −1.29 ± 0.48

EDC-NHS +5.1 ± 0.4 +5.28 ± 0.48

Ethanolamine +13.6 ± 0.4 +13.04 ± 0.48

The reference solution is the buffer with a RI of 1.3351 (measured at 589 nm).

Fig. 7 | Biosensing results. a, b Functionalization process: a continuous flow of
30 μLmin−1 of various solutions is injected into themicrofluidic chamber containing
the sealed gold-coated tilted fiber Bragg grating (TFBG). This process leads to the
attachment of anti-insulin antibodies as receptors. The results are analyzed using the
cross-demodulation method (a) and the proposed model (b). The red dashed

horizontal line denotes the refractive index boundary for which the model was
trained (1.3432, corresponding to an 8.2 mRIU shift relative to the buffer reference).
Biodetection process (c, d): 2 insulin solutions at concentrations of 0.1 μg mL−1 and
1 μg mL−1, are introduced successively into the system. c displays it using the cross-
demodulation technique, while (d) is the result of our proposed method.
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Constitutive dataset
To obtain the training data, a series of 16 refractometry experiments were
conducted on distinct Au-TFBGs. A total of 610 measurements were con-
ducted, with 140 measurements (the entire data from 4 distinct fibers)
reserved for the validation phase. The remaining 470 measurements
underwent a data augmentation process, multiplying themby a factor of 49.
This augmentation resulted in a comprehensive training dataset comprising
23,170 spectra.

Experimental setup with the OVA
The process of acquiring data entailed employing an OVA (specifically
the OVA CTe 4000NF manufactured by Luna Technologies Inc.) in
conjunction with an Au-TFBG directly connected in transmission.
The TFBG was placed within a trough, enabling submersion of the
fiber in aqueous index solutions. The initial polarization state was
established following the procedure outlined in “Data acquisition and
preprocessing”.

Experimental setup with the OSA
ILsmeasurementswere acquiredusing anunpolarized superwideband light
source (Amonics ASLD-CWDM-5-B-FA) and an optical spectrum analy-
zer (OSA, Yokogawa AQ6370). To adjust the input state of polarization, an
in-line linear polarizer followed by a polarization controller was positioned
upstream of the TFBG. The sensing section of theAu-TFBGwas positioned
within a trough, allowing the fiber to be immersed in aqueous index solu-
tions. The input polarization state was determined by observing the spec-
trum during the polarization adjustment process.

Experimental setup for biosensing
For the functionalization and biodetection experiments, the Au-TFBG
sensor is placed within a microfluidic chamber with a cross-section of
(3.2 ± 0.7) mm2. The chamber, frommicrofluidicChipShopGmbH, has a
volume of 120 μL and features two inlets and one outlet, allowing for the
alternating delivery of different solutions into the chamber. The output
flow rate is regulated at 30 μL min−1 to maintain a consistent flow rate
during the experiments. The solutions are precisely controlled using
double diaphragm pumps integrated with a bubble trap and a pulsation
damper (Micropumps mp6, mp-bt, and mp-damper from Bartel
Mikrotechnik).

Data availability
All data that support this study are available from the corresponding author
upon reasonable request.

Code availability
Code to replicate this research can be requested from the corresponding
author upon reasonable request.
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